Integrated Marine Informations System - IMIS

Personen | Instituten | Publicaties | Projecten | Datasets | Kaarten
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

The vegetation silica pool in a developing tidal freshwater marsh
Jacobs, S.; Müller, F.; Teuchies, J.; Oosterlee, L.; Struyf, E.; Meire, P. (2013). The vegetation silica pool in a developing tidal freshwater marsh. Silicon 5(1): 91-100. https://hdl.handle.net/10.1007/s12633-012-9136-9
Peer reviewed article  

Beschikbaar in  Auteurs 

Trefwoorden
    Phragmites australis (Cav.) Trin. ex Steud. [WoRMS]
    Brak water
Author keywords
    Silicon; Biomass measurement; Restoration; Succession; Silica cycling; Controlled reduced tide

Auteurs  Top 
  • Jacobs, S., meer
  • Müller, F.
  • Teuchies, J., meer

Abstract
    Tidal marshes play an important role in the estuarine Si cycle. Dissolved silicon (DSi) is taken up by marsh diatom communities and by tidal marsh vegetation. Delivery of DSi back to the estuary after biogenic silica dissolution potentially increases the resilience of the estuary against harmful effects of DSi depletion events. Tidal freshwater marsh vegetation, often dominated by reed (Phragmites australis) has previously been hypothesized to contribute to the Si buffering function of tidal marshes, by dissolution of reed biogenic Si (BSi) into the soil pore water and consequent seepage of DSi to the estuary. In this study the Si pool in the vegetation of a restored tidal freshwater marsh was quantified using species-based cover-biomass relationships and Si analyses. The Si pool in the aboveground biomass increased from 1.2 to 6.5 t km-2 during the first 6 years of colonization by tidal freshwater marsh species. Our results indicate that young tidal freshwater marshes have a high potential to build up a large vegetation Si pool quickly, mostly due to colonization by species that have both high Si concentrations and high biomass production (e. g. P. australis). This Si pool in vegetation could act both as a long-term sink for Si along estuaries (should Si remain buried in the sediments) or as a short-term source for DSi (should Si be dissolved to DSi).

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs