SCHELDE
MONITOR

ScheldeMonitor Manual:
Using the RStudio environment

Written, maintained and updated by VLIZ - Version 1 (15/12/2020)

R AN oo TU) OOV 2
2 Connecting to the RStudio environment of ScheldeMonitor..........ceeeeceececeeecee e 3
3 Working with the RStudio environment of ScheldeMonitor ... 5
3.1 GUIEIINES TOr WOIKSPACE ..ottt et aeae s se e seete e s esese e ssesensesnsennsssensanns 5
SEE @ WOIKSPACE ..ttt ettt ettt ebe et ebe e b ebe e s ebessetssensnsebassnetensasssasnanes 5
STAMt @ 10CAI PrOJECT. ..ttt et et et be e be e et se e s bese e beneaeesaneanes 6

Set up an existing GitHUB ProjECT.... ettt ettt es e s snnnnas 9

G 70 €U T 1o 1=Y [T TSI] Yol o o) = OUOUOT 11
DiIrECLONY STIUCTUIE ..ttt et e e e s b e b e et e se s sesen s enennenas 11
Yol T oY d g T 111 oV PSP 13
Yol g o L 0=« U Lot (U1 OO OO 14
SCrPT ANNOTATIONS. ...ttt ettt e bt ae e b et ebe e e besean et eneanenas 17

IS G B C U] To L1] g T=T o] gl fo o [TP 17

[F= o Lo Yo 1 g Vo TSR 17
NAMING CONVENTIONS ...ttt et e se b s b e eeebe e s bese e bese s stese e sesenssessaneas 18
1Yo = L1 T TR OO OO OO SOOI 19
(@L0Te T o] (ool 0TSPTSRO 20
LONG lINES OF COUR ..ttt a b e s s s s s snsananas 21
PIIDES ettt ettt b et et b et a et beRe e eAeae e beRe e et eRe s sebe e eteseasesesennsetennares 22
Tidyverse style guide & add-0NS......cccoeeeccceceririr e e se e e snnas 23

4 Using data from ScheldeMonitor in RSTUIO ...t 25
4.1 Using data from download data files.........ceeceecee e 28
4.2 Using data from generic WEDSEIVICES ...ttt 29

T 111 Yo [T OO 31

SCHELDE
MONITOR

1 ABOUT

This document was written as a manual on the use of the online RStudio environment of the
ScheldeMonitor information and data portal. This environment has been accessible through the
ScheldeMonitor website since 2021. It provides accredited researchers and the partners of
ScheldeMonitor with a centralized RStudio hub to do analysis and build up scripts directly
based on the data and information that is held within the portal and the underlying database.

Within the manual, guidelines are provided for new users or users that are inexperienced in the
use of RStudio, as well as some overall recommendations on how to keep work in RStudio
structurized and comprehensible. The last chapter of this manual also provides a step-by-step
breakdown on how to load data from ScheldeMonitor into the RStudio workspace.

The RStudio environment can be accessed from the website, using the following link. To
access, credentials are required. These credentials can be requested here, or by sending a mail
to info@scheldemonitor.org with a statement on the reason why use of the RStudio
environment is required.

It is also possible to link the RStudio environment with an existing project from the
ScheldeMonitor GitHUB organization. How to work with GitHUB in relation with RStudio, is
discussed in an additional manual.

2|Page

SCHELDE
MONITOR

2 CONNECTING TO THE RSTUDIO ENVIRONMENT OF
SCHELDEMONITOR

The ScheldeMonitor environment can be accessed at (insert url) using your received credentials:

sign in to RStudio

lsername:

Fassword:

r Stay signed in

These credentials are similar to those used for all other tools within the ScheldeMonitor platform,
such as the data download toolbox and the E-room. To receive your personal credentials, contact
the helpdesk of ScheldeMonitor stating a reason to use the RStudio environment.

Once logged in, you will see your personal workspace in RStudio. This workspace can either be
cleaned (for instance if you are a new user) or show the structure and content that was worked
on during your previous session if you saved the workspace image on the last closure.

A personal workspace is standardly composed of four windows, showing scripts or dataframes,
your environment, the console, and your project or personal file structure. It also indicates which
user is logged in and which project is linked to your workspace:

3|Page

SCHELDE
MONITOR

Script & file viewer Environment & GIT viewer

Bl Rdin Cade Veew Mems tessles el Debeg Refils Took Help

.0 . A Goba fdaTunci - MEEA

wireament Mitary Commrctionm

T N > &) | e wpcnusee = | o
=W L ¥ w] w oW L Ll wie i) clotad Ervwonmant = X
1w IERiE Ity B L v tveta pan e e s Bata
prp—— p—— e O data Large mesponse (1D elenents, 4.9 Wb <
¥ s abianaie e 115 i 427 180 . s AT Bl EY T R T, R
- o s af 17364 o, of 13 varlables

3 S sh eI TLAMEE 1MsE e T AR w1 Rarta e B B B e AT ik walves

P T np—— SLUINGING ADSPINLE THEAE-LT UMD SR N A —————— CRP— [ree r— ufi "RALE ARG, vLLE B /geaier ver fuf i i o e
& Sk o mnatons, 44T IR T H IRTE 4 Biomaiia i g on i a0 2, AR Wageargen Marme Baeinch SKEES s

B S tbienates AHINT SIAEGAT FRE-L LR BarEM paran an par jane AR Wagtregen Warar Faseiet QNS | Cadie e

7 e b oations, 47) ABCESEGET THIS-L-TL A0 Rarks par IR Wagtrargen Marme Baseinch GUASET | Coiie shodk

ey e wa Y Rarmu g FAIE Wagereries Wires Beike o QUMD (e etk

¥ en cbicnations EER “ Raresl par PAIE Wagtranges Warae Feioh SUMEES Cadie e

" - - a P — B I T e e —
al] S| G e Poies | O Upiad |© Delete o Bemame | I Mo -

acraing 1821 o«

fizs (iR

Cowiebe Termlnal © o T

: “test i), Pesder = FALSE

TtestTil Besder =

“hetp: Ageo. vill,besgooter vor fuf o fowt Frer vl eelS Shver clone 1., BT eQUOEt <GotF et urpht
wh e AC 0+ B3GR TS ARATELD LR D RS EFIG TRt 0 e _jear¢ haBE TVl INE3T30:
Lonagnal itaphlebatits cnamelitabier vat Len dateldtLongltadelit Lot tudeitn

gtitledoutputiorny

podsme=Dat aport sLEaablotic_obtervatloneAres sl t T ppesr etult chvlmaar o
FTeANDeRITI0 1EY R0 B et BIAMME LACr Cover € yates it ot
Rt par sngternameRitdat aprovicerkilalidataset Latdatanont it LoRiCdut aflch

Console

Inventory

4|Page

SCHELDE
- MONITOR

3 WORKING WITH THE RSTUDIO ENVIRONMENT OF
SCHELDEMONITOR

3.1 GUIDELINES FOR WORKSPACE

The default behaviour of R for the handling of .RData files and workspaces encourages and
facilitates a model of breaking work contexts into distinct working directories. This implies that
the user can select a certain folder in his local directory to use as the location where files, handled
through RStudio, are saved. This local directory, or workspace, can be altered at any given
moment by the user.

In version v0.95 of RStudio, a new ‘Projects’ feature was introduced to make managing multiple
working directories more straightforward. It is recommended to use this feature, however this
chapter also explains how to handle your workspaces in the default manner.

As with a local RStudio installation, the online RStudio environment of ScheldeMonitor uses the
local user’'s home directory as workspace by default. This workspace is typically referenced using
~in R. When RStudio starts up it does the following:

e Executes the .Rprofile (if any) from the default working directory.
e Loads the .RData file (if any) from the default working directory into the workspace.
e Performs the other actions described in R Startup.

When RStudio exits and changes to the workspace have been made, a dialog box asks whether
these changes should be saved to the .RData file in the current working directory. Clicking “Save”
will ensure that your changes are stored and will appear as they were the next time you login to
the RStudio environment.

Set a workspace
RStudio displays the current working directory within the title region of the Console. To check
your current working directory, you can run the command getwd() in the RStudio console:

> getwd()
[1] "C:/users/jeller/Documents”
-

5|Page

SCHELDE
- MONITOR

To change the working directory, you can run the command setwd() in the RStudio console with
the new directory inserted as a string:

> setwd("\\Fs\HOME \jeller")

You can also change the working directory by selecting the “Tools” menu and “Change Working
Directory”. For users with Mac, this is found in the “Session” menu and the “Set Working
Directory”.

Be careful to consider the side effects of changing your working directory:

e Relative file references in your code (for data sets, source files, etc.) will become invalid
when you change working directories.

e The location where .RData is saved at exit will be changed to the new directory.

Because these side effects can cause confusion and errors, it is usually best to start within the
working directory associated with your project and remain there for the duration of your session.

The best practice, however, is to connect the RStudio environment to a certain ‘project’. This
allows for a better oversight on the working directories and different cases you work on within
the same RStudio environment. The next segments describe how such projects are instigated.

Start a local project

Any approved user can utilize the RStudio environment to commence or continue his or her
personal project with the data of ScheldeMonitor. Doing so, users can either start a new local
project, download an existing project from their own GitHUB, or connect their work to the GitHUB
organization of ScheldeMonitor.

Starting a local project is the easiest way to commence your work. This project is saved on a local
drive of the user's hardware, and can only be restarted by accessing that drive. To initiate such a
local project, users need to follow the following steps:

v" Open the “File” menu and select “New Project”.

6|Page

SCHELDE
MONITOR

File Edit Code View Plots S5Session Builld Debug
Mew File b Jfung

Mew Project...

Open File... Ctrl+ O
Reopen with Encoding...

Recent Files k

Open Project...
Open Project in New Session...

Recent Projects r

Import Dataset r

v" In the New Project Wizard, select “New Directory”. This will start a new project that will
be saved on the local drive of the user’s hardware.

New Project Wizard

Create Project

R New Directory 5

- Start a project in a brand new working directory

Existing Directory

ot - - - — - - >
Lﬂm Associate a project with an existing working directory

Version Control
Checkout a project from a version control repasitory

Cancel

7|Page

Mew Project

Back Project Type

L Mew Project
R Package
E Shiny Wweb Application
R Package using Ropp
R Package using Reppanrmadillo
R Package using RocppEigen

R Package using devtools

SCHELDE
MONITOR

v" The user can now choose which type of project needs to be started.

| v

WoOW W NN N

|

Cancel

e New Project: Basic R project where all kind of scripts can be set up.
o R Package: Project where users can make and publish dedicated R packages

for other users.

e Shiny Web Application: R project where all scripts are premade for users to

create and run Shiny web applications.

Lastly, the user can name the project and select the directory in which the project will
create a subdirectory. Selecting the option “create a git repository” will allow the user to
use locally installed version control. This option is not needed when working with an

online GitHUB space.

Mew Project

Back Create New Project

Directary name:

| a Create project as subdirectory of:

Create a git repository

Use packrat with this project

Create Project

Browse...

Cancel

8|Page

) SCHELDE
MONITOR

Set up an existing GitHUB project

If a project needs to be user-controlled and accessible by multiple users, it is best practice to
create a repository on GitHUB. Setting up a personal GitHUB repository is beyond the scope of
this manual. However, as ScheldeMonitor has created a GitHUB organization, a dedicated
manual on the use of GitHUB is available on the website.

To connect your personal space of the RStudio environment on ScheldeMonitor to a known
GitHUB repository, the following steps need to be taken:

v" Open the “File” menu and select “New Project”.

File Edit Code View Plots Session Build Debuc
Mew File b Jfung

Mew Project...

Open File... Ctrl+0
Reopen with Encoding...

Recent Files L4

Open Project...
Open Project in Mew Session...

Recent Projects r

Import Dataset r

v" In the New Project Wizard, select the option “Version Control”.

New Project Wizard

Create Project

R New Directory N

Start a project in a brand new working directory

Existing Directory

Associate a project with an existing working directory

Version Control

Checkout a project from a version control repository

Cancel

9|Page

Jelle Rondelez
link

SCHELDE
MONITOR

v" Next, select “Git” as this is the version controlled methodology used within the context of

ScheldeMonitor.

New Project Wizard

Git

Clone a project from a Git repository

—
Subversion
Checkout a project from a Subversion repasitory

Back Create Project from Version Control

Cancel

v" To establish a connection between your personal RStudio environment and the GitHUB
repository, the system needs to know from which online space the repository can be
downloaded. This URL matches the online repository on https://github.com/. Additionally,
the system needs a local directory to store the downloaded files, or to hold up the files
that have not been uploaded back to the repository yet.

Mew Project Wizard

Back Clone Git Repository

Repository URL:

| https://gitlab.vliz.be/datac/ rshiny/scheldemonitorfi

Project directory name:

| waterniveauschelde

Gl+

Create project as subdirectory of:

| Browse...

Open in new session

Create Project Cancel

10|Page

https://github.com/

SCHELDE
- MONITOR

3.2 GUIDELINES FOR SCRIPTS

A working directory or project in RStudio can hold a large number of scripts and files to work
with. In order to keep the work organized, as well as reproductive over time, it's important to
structure these scripts both in the directory as well as internally. The segments below suggest
guidelines that might aid researchers in keeping their work transparent for themselves and other
users.

Directory structure

A working directory or project is similar to any other folder on the local drive of your hardware.
This implies that such a directory can consist of folders and subfolders. It is, however, imperative
that folders are created following a certain structure or idea, to make the scripts and underlying
data findable for yourself and other users. There are multiple levels on which a directory can be
structured.

Firstly, if your work in RStudio is linked to a certain publication or report, your directory structure
should mimic the same structure as the headings of the report. Here is an example from the
T2015 report on the Scheldt, for which the project directory was structured conform the titles
and subtitles within the published report:

_Algemeen

3_Dynamiek waterbeweging
4 Bevaarbaarheid

5_Plaat- en geulsysteem
6_Waterkwaliteit
7_Leefomgeving

3 _Flora en Fauna

& Ecologisch functioneren

Yet, it is even more important to have a uniform structure at the lowest level of the working
directory, where all files are stored. Especially for projects that are not linked to a fixed report,
and for which the above-mentioned structure is not applicable.

Typically, data files and scripts should be saved in separate folders. Although it might seem more
convenient to keep those files together, the general overview benefits from the two-folder
structure. Scripts and data files often do not have a 1:1 relationship, as a single script can use
multiple data files while these data files are run through multiple different scripts. However, the
structure of each folder should be the same, with a folder for every phase of the project:

l1|Page

SCHELDE
- MONITOR

a. Raw data

b. Cleaned data

¢. Analyzed data

d. Figures & Results

Data

Scripts

a. Import scripts
b. Cleaning scripts
c. Analysis scripts
d. Figure scripts

Using this structure, a uniform workflow can be established within the project directory. This
workflow follows four steps, that are explained using the following table:

Saving new data or
results in:

Using scripts or
functions from:

Using data from:

Step 1 - Import data
(if necessary)

Step 2 — Clean data ‘a. Raw data’ ‘b. Cleaning scripts’ ‘b. Cleaned data’

Step 3 - Anal

Step 4 - Create

. & ‘c. Analyzed data’ ‘d. Figure scripts’ ‘d. Figures & Results’
figures or results

Itis possible that users rather run a single script to go through all these steps, especially in smaller
projects. In this case, a ‘Main.R’ script can be saved alongside the ‘Data’ and ‘Scripts’ folders. This
main script can then run through all these steps on its own, while sourcing different data files
and functions from the underlying folder structure. The latter is especially important in larger
projects, to ensure that the length and readability of the main scripts is optimal. When doing so,
it is very important that the main script is well structured and annotated, as will be further
explained in Script structure and Script annotations below.

n/a ‘a. Import scripts’ ‘a. Raw data’

In any case, only one ‘main.R’ file should be present as to not create confusion.

12|Page

SCHELDE
- MONITOR

Script naming

Scripts should be named in such a way that users can easily derive its purpose, in order to not
have to open all scripts in an RStudio environment to know what they are used for. This is
especially important when working with a main script that sources functions from other scripts
throughout the different phases.

For example, when using different scripts for different kind of graphs, the nomenclature should
clearly indicate which plot is made using the script:

MakeBarplot.R
MakeDatatable.R
MakeLineplot.R
MakeSpiderplot.R

Additionally, if the work in the RStudio environment is linked to a certain report or publication,
the figure number from the publication could be inserted in the file name:

Figured.4 - MakeBarplot.R
Figure3.5 - MakeDatatable.R
Figure5.B - MakeLineplot.R
FigureB.3 - MakeSpiderplot.R

It is also possible that multiple scripts are used for the same figure, for instance if users want to
be able to show both the original and the new plot on a later date. Still, the nomenclature needs
to clearly indicate the discrepancies in the different scripts:

Figured.4 - MakeBarplot.R

Figure3.4 - MakeBarplot & trendline.R

Figure3d.4 - MakeBarplot & errorbars.R

Figure3.4 - MakeBarplot & trendline & errorbars.R

13|Page

SCHELDE
MONITOR

Nevertheless, whatever nomenclature is chosen, it should consist of a fixed and uniform naming
convention. There are several options to choose from, similar to the ones available for code
nomenclature as explained in Naming conventions:

o alllowercase: e.g. makebarplot

e period.separated: e.g. make.barplot

e underscore_separated: e.g. make_barplot
o |owerCamelCase: e.g. makeBarPlot

e UpperCamelCase: e.g. MakeBarPlot

Script structure

Similar to a directory, an individual script can greatly benefit from a fixed and uniform structure.
This structure should clearly delineate the different sections in a script, which gives the reader a
quick overview on the content, but also ensures the user that all actions and functions are run in
a fixed order. Script structure can be accomplished almost immediately by using headings in the
code. These are inserted in the same way as annotations are done. Ideally, all scripts should have
the same headings to start with:

e Who, when, what and how: This is a large heading that should start every script in your
project, stating who wrote the script, when it was written, how to contact the writer and
what its purpose is.

e O — Load libraries: In this section all libraries are listed that need to be loaded before
running the whole script. This section can also give some further explanation on the use
of those libraries.

e 1 — Static part: In this part, all static actions are taken such as loading in data files,
preparing those data files for analysis, sourcing other scripts and functions or naming
arguments that will be used later on in the script.

e 2 — Script: This section contains the actual code that makes the script fulfill its purpose.

1l4|Page

SCHELDE
- MONITOR

1

2 v HHHE S R S R S S
3 ## This is an example for the manual

4 EF

5 ## written by Jelle Rondelez of VLIZ

6 ## info@scheldemonitor.org - Oct 2020
Fi

B

9

R 2

~ BEERRAEER R AR R R

10 # 0 - Load librairies

11 ~ #EEER SRR R R

12 Tibrary(dplyr) # package to clean datatable

13 Tibrary(lubridate) #package to change date formats

|5 - #Edsdissndridadinidndaisadist
16 # 1 - Static part
|7 - $#asdisssndridadinitndaisadast

19 #Assign variable
P0 newvar <- ""

P2 #Source script from within directory
P3 source("Scripts/a. Import scripts/ImportWFs™)

P5 #opendatafile
6 datafile <- read.csv(file = "Data/b. Cleaned data/dataRws.csv'™)

PO « SRR R R
B0 # 2 - Script

Bl ~ HEF R R R
B2 code...

Note that the sourced files in the example above are using the directory structure as described in
Directory structure.

These headings not only give a fixed structure and order to all scripts in the project, it also has
the added advantage that sections can be collapsed or expanded if needed. Especially for longer
scripts, in which certain sections of the code are not of interest to the user, this can greatly
increase the readability of the script:

15|Page

SCHELDE
MONITOR

1

2 v EER AR R R R R R A B R A R R R R T S A 1
T v R B B R R R R R R S R T R
8

9 v FERHEHEHEH R R

10 # 0 - Load librairies

11 v FEFEE R R)

15 v FEFAE R R R

16 # 1 - static part

17 v SEFEE R R)

29 - FEREEEE R R R R R

30 # 2 - scripy

31 - R R R R

32 code...

Larger scripts can benefit more from an expanded structure with additional headings. This is
especially true for ‘main.R’ scripts that run through all phases of the project within a single script,
as discussed in Directory structure. Those type of scripts typically source and use a multitude of

different functions and files. An extended structure can make these scripts more readable and
can make it easier to search for a specific function or action:

1

2 » HEARHAHRRES R R R S R A S
3 ## This is an example for the manual

4 ##

5 ## written by Jelle Rondelez of vLIZ
6 ## info@scheldemonitor.org - Oct 2020
7

8

9

B ey

4

4

e e e S S

10 # 0 - Load librairies

e e S TS

12 Tibrary(dplyr) # package to clean datatable

13 Tibrary(lubridate) #package to change date formats

=3
=
1

(15 « SHHEFHE R R R R
6 # 1 - Static part
B e g

=3
=
14

19 #Assign variable
20 newvar <- ""

P2 #Source script from within directory
23 source("Scripts/a. Import scripts/ImportwrFs™)

5 #opendatafile
26 datafile <- read.csv(file = "Data/b. Cleaned data/dataRws.csv")

P9 ~ #HAREAHEREERSR RS RS
30 # 2 - Script

31 - FRRad iR AR SRR R AR R R R AR Y
32 code...

34 » HHERE R
35 # 3 - Analysis part

36 - FEEAHR R AR SRR R AR R R AR
37 code...

39 ~ FREEEFERERERE AR AR AR RS
MO # 4 - Make plots & Figures
R R
M2 code...|

16|Page

) SCHELDE
MONITOR

Script annotations

Annotating code is important for a number of reasons. The main reason is for the user personally
when looking back on what was coded. It helps to explain in detail what a line, chunk or even
section of code is trying to accomplish. This is also helpful for other people who read the code.
Explaining what a line of code is doing can be useful for others who are looking to adapt work to
their own, or when someone is checking or evaluating a chunk of code.

Annotating code is done with the symbol # (hashtag). Typically annotating can be done above a
whole chunk of code, like when explaining the purpose of a certain function.

#Reactive values for user location

data_of_click <- reactivevalues (clicked = NULL)
Tongitude_click <- reactivevalues (Ing = NULL)
lattitude_click <- reactivevalues (lat = NULL)

#IT user clicks on map, new coordinates are saved and map is adjusted
= observeEvent(inputiMap_click, {
data_of_click$clicked <- inputiMap_click
10 longitude_click <- inputiMap_clickilng
11 lattitude_click <- inputiMap_clickilat
12 lTeafletProxy('Map') %%

(Wi o= T (s W O S O

13 clearMarkers () %=%

14 addvarkers(Ing = inputMap_clickIng,

15 Tlat = dinputiMap_clickilat,

16 popup = paste(“Longitude=", round(inputiMap_click$Ing,2), "and",
17 - B

3.3 GUIDELINES FOR CODE

Unfortunately, unlike other programming languages, R has no widely accepted coding best
practices. Instead there have been various attempts to put together a few sets of rules. This
chapter tries to fill the gap by summarizing what was found relevant in those various attempts.

Hardcoding

Calling to a file or folder from within a script is mostly done through ‘hardcoding’, e.g. giving the
location of the file as a string. However, users are strongly recommended to keep the amount of
hardcoding minimal, as it requires less effort to change a script when a directory location changes
if less harcoding is used. To do so, if your code will read in data from a file, define a variable early
in the code that stores the path to that file. By doing so, the following example:

17|Page

) SCHELDE
MONITOR

1

2 input_file <- "data/data.csv"

3 output_file <- "data/result.csv"

4

5 #read input .
6 input_data <- read.csv(input_file)
7

8 #get number of samples in data

9 sample_number <- nrow(input_data)
10
11 #generate results
12 results <- some_other_function(input_file, sample_number)
13
14 #write results
15 write.table(results, output_file)|

is preferable to:

1

2 input_file <- "data/data.csv"

3 output_file =- "data/result.csv"

4

5 #read input _

6 input_data <- read.csv("data/data.csv")

7

8 #get number of samples in data

9 sample_number <- nrow(input_data)
10
11 #generate results
12 results <- some_other_function("data/data.csv", sample_number)
13

14 #write results

15 write.table("data/results.csv"”, output_file)|

Naming conventions

R has no naming conventions for variables and functions that are generally agreed upon. As a
newcomer to R it is useful to decide which naming convention to adopt. Generally, there are five
naming conventions to choose from. It is important to pick one convention and stick to it for the
remainder of your project:

18|Page

SCHELDE
MONITOR

e alllowercase: e.g. adjustcolor

e period.separated: e.g. plot.new

e underscore_separated: e.g. numeric_version
e JlowerCamelCase: e.g. addTaskCallback

o UpperCamelCase: e.g. SignatureMethod

Above else, and besides the chosen naming convention, it is important to choose variable and
function names that are concise and meaningful.

Spacing

As with naming conventions, there are no syntax conventions when it comes to writing code in
R. However, large scripts benefit greatly from the use of a clear and consistent syntax, as it makes
the code more open and readable. Using correct spacing in your code makes an invaluable
difference in the syntax. It can be implemented by following these rules:

¢ Always put a space after a comma, never before, just like in regular English.

H

Good
[, 1]

-

Bad
[,1]
.rl:
[, 1]

-

e Do not put spaces inside or outside parentheses for regular function calls.

Good
mean(x, na.rm = TRUE)

Bad
mean (x, na.rm = TRUE)
mean(x, na.rm = TRUE)

19|Page

SCHELDE
MONITOR

e Place a space before and after () when used with if, for and while.

Good
if (debug) {
show ()

Bad
if(debug){
show(x)

e Place a space after () used for function arguments:

Good
function(x) {}

Bad
function (x) {}
function(x){}

e Most infix operators (==, +, -, <-, etc.) should always be surrounded by spaces:

Good
height <- (feet * 12) + inches
mean(x, na.rm = 1@)

Bad
height<-feet*12+inches
mean(x, na.rm=1@)

However, it is important to not overdo spacing as well. Adding extra space can help, but
only if it improves the alignment of = or <-. Do not add extra spaces to places where
space is not helpful.

Code blocks
Just as when talking about the overall structure of a script, hierarchy is equally important within
the code itself. To define the most important hierarchies, curly braces are used. However, to keep

20|Page

) SCHELDE
MONITOR

the hierarchy transparent for yourself and other users, a consistent syntax is needed when using
curly braces. This syntax is based on three rules:

» ‘' should be the last character on the line. Related code (e.g. an if clause, a function
declaration, a trailing comma, ...) must be on the same line as the opening brace.

» The contents should be indented by two spaces.

» '} should be the first character on the line.

Good
if (v < @ && debug) {
message("y is negative")

if (y == @) {
if (x > 8) {
log(x
T el
me

L]

Sa

(fy]

e {
fm s : = o
ge("x is negative or zero")

T else {
.-'\X

el

Long lines of code
Users are recommended to always strive to limit the code to 80 characters per line. To do so,

using a concise and efficient naming convention might already be an important step. If a function
call is too long to fit on a single line, use one line each for the function name, each argument, and
the closing bracket. This makes the code easier to read and to change later:

21|Page

. SCHELDE
MONITOR

Good
do something very complicated(

something = “"that™,
requires = many,
arguments = "some of which may be long"

Bad
do_something very complicated("that”, requires, many, arguments,
"some of which may be long”

)

Pipes

Even when using correct spacing and adequate structuring of code blocks, a script can remain
quite difficult to understand. This is especially true for scripts where a lot of different operations
and functions are being used. When code is formed by a lot of functional language, it comes with
a large number of parentheses and arguments per function. This can make code extremely
complex and hard to understand.

To overcome this problem, users are recommended to using ‘piping’ for multiple actions on the
same argument. Piping uses the ‘%>%’ operator and can be used by installing the ‘magrittr’ or
‘dplyr’ library. It is best explained through three simple rules:

e f(x) can be rewritten as x %>% f
e f(x,y) can be rewritten as x %>% f(y)
e h(g(f(x))) can be rewritten as x %>% f %>% g %>% h

When following these rules, it results in the following real-life R example:

1
#Import "dplyr' library
library(dplyr)

3
4
5 #Load the data

6 data(babynames)

i

8 #Count how many young boys with the name “Taylor" are born
9 sum(select(filter(babynames, sex=="M", name=="Taylor"),n))
10
11 #Do the same but now with "%>%"
12 babynames¥>%filter(sex=="M", name=="Taylor")%=%

13 select(n)%=%
14 sum|

22|Page

SCHELDE
MONITOR

The R-community has multiple guides on how to style and manage your code in order to make it
readable and clean. All these style guides are however fundamentally opinionated. Some
decisions genuinely do make code easier to use, but many decisions are arbitrary. The most
important thing about a style guide is that it provides consistency, making code easier to write
because you need to make fewer decisions.

Tidyverse style guide & add-ons

Users of the RStudio environment of ScheldeMonitor are recommended to use the tidyverse style
quide, as it is one of the most commonly used guides. The rules mentioned above in this manual
are also part of the tidyverse style guide.

There are two tools that can be installed by users that make it easier to implement this style
guide, the ‘styler’ and ‘lintr’ packages. These packages can be installed with the following R code:

Install.packages()

e The ‘styler’ package allows to interactively restyle selected text, files or entire projects. It
includes an RStudio add-in, the easiest way to restyle the existing code.
~/LOCL
~ Addins -
nt STYLEF style
Style active file | |
Style package

Style selection

e The ‘lintr' package can perform automated checks to confirm that code is conform the
style guide. This check is automatically displayed in the RStudio ‘Markers pane’. To show
this pane, go the “Tools” Menu and select “Global Options...”. A window with title
“Options” will pop up. In that window: Select “Code” on the left; Select “Diagnostics” tab;
Check “Show diagnostics for R”.

23|Page

https://style.tidyverse.org/
https://style.tidyverse.org/

The following window will now be visible:

SCHELDE
MONITOR

Q- &2 - =)
B bad.R % =]
=] Source on Save Q /-3 =#Run | =% || Source -
1 fun:=:function(one)
2+ {
3 one.plus.one-<--oen-+-1
4 four <--newVar:<--matrix(1:10,nrow:=-2)
5| four[-1, -]
6 - txt-<--'hi'
7 three:<--two+:1
8 if(txt:-==-'hi') 4
9 5}
10- {
11
6:14 funfone) = R Script *
Console Markers » =]
lintr= ¥

~/Dropbox/projects/lintr/bad.R

@ Line 1 Use <-, not =, for assignment.

@ Line 2 Opening curly braces should never go on their own line and should always be followed by a new line.
@ Line 3 Words within variable and function names should be separated by ' ' rather than '.'

& Lline 3 local variable ‘one.plus.one’ assigned but may not be used

4 line 3 no visible binding for global variable ‘oen’, Did you mean 'ane'?

@ Line 4 Variable and function names should be all lowercase.

A line 4 Tlocal variable ‘newVar' assigned but may not be used

@ Line 4 Commas should always have a space after.

@ Line 5 Do not place spaces around code in parentheses or square brackets.

@ Line 6 Only use double-quotes.

M lLine 7 local variable ‘three’ assigned but may not be used

& Lline 7 no visible binding for global variable ‘two’, Did you mean 'txt'?

@ Line 7 Put spaces around all infix operators.

@ Line 8 Place a space before left parenthesis, except in a function call.

@ Line 8 Only use double-quotes.

@ Line 9 Closing curly-braces should always be on their own line, unless it's followed by an else.
@ Line 9 Trailing whitespace is superfluous.

@ Line 10 unexpected end of input

24|Page

SCHELDE
MONITOR

4 USING DATA FROM SCHELDEMONITOR IN RSTUDIO

Most of the data in ScheldeMonitor can be used freely, and users are encouraged to use the
RStudio environment of ScheldeMonitor to further analyse and validate our data collection. To do
so, the data needs to be loaded into the RStudio environment first. This can be done either by
loading downloaded data files such as CSV or TXT, or by using the generic webservices of
ScheldeMonitor. Both methods involve accessing the Data Download Toolbox of ScheldeMonitor,
which can be done using the following steps:

v" Go to the home screen of the toolbox and choose between biotic and abiotic data.

E SCHELDE
3~ MONITOR

Home Zoeken op thema Tools Project -

Biotische Data Abiotische Data

(periodieke metingen) (periodieke metingen)

v' The toolbox offers several criteria to filter the database of ScheldeMonitor. These criteria
differ for biotic and abiotic data, yet are not mandatory to be selected. When criteria are
selected, the counter on the right side of the screen shows the remaining number of
records that match the chosen criteria.

v" Once all desired criteria are selected, select the green “Next” button to view a data
summary of your data in the toolbox.

25|Page

Jelle Rondelez
link

Jelle Rondelez
link

SCHELDE
MONITOR

@ SCHELDE

MONITOR Home Zoeken op thema - Tools - Project ~
Toolbox Home > Abiotische Data > Exploreel

categorie: Alles v
Databron

parameter: Geografisch

Temporeel

Parameters
Zoek 1.1,1,2-Tetrachloorethaa

Approx. records: 20

x 8

Parameter

1,1.1,2-Tetrachloorethaan in mg/kg drooggewicht in sediment Voeg

Uw

1,1.,1,2-Tetrachloorethaan in ug/l in opperviaktewater

+ + + O

Selectie

11.1-Ti in mgrkg in sediment

v" The toolbox shows a summary of the chosen data set, along with several options to
download or visualize the data. The following actions can be taken in the toolbox:

e Download Data: a data file in csv-format will be downloaded. More detailed
information is available in the segment ‘A: Using data from download data files’.

e View on Map: visualizes the data in a dynamic map viewer.

e Upload to MDA: saves your specific data selection to the Marine Data Archive, so
that this selection becomes reusable on a later date.

e Save selection: saves a JSON file describing your specific data selection.

e Share: creates a URL link of your selection

o Webservice URL: generates a WFS url (Web Feature Service) that can be used to
automatically load the data in a script or medium. More detailed information is
available in the segment ‘B: Using data from generic webservices'.

e |oad selection: loads in a previously saved data selection using a JSON file.

26|Page

165000
153000
253000
167000
180000
272000
172100

499500

Actions

Stationsnaam

110 8 of 16 records

Toon/Verberg velden

Titel
Parameter Dataset
1,1,1,2-Tetrachioorethaan in mgikg drooggewicht in sediment | Datai
1,1,1,2-Telrachlooreihaan in mg/kg drooggewicht in sediment | Defai
1,1,1,2-Tetrachioorethaan in mgkg drooggewicht in sediment | Datai
1,1,1,2-Tetrachioorethaan in mgikg drooggewicht in sediment | Detai
1,1,1.2-Tetrachioorethaan in majkg drooggewicht in sediment | Datal
1,1,1,2-Tetrachioorethaan in mgikg drooggewicht in sediment | Detail
1,1.1.2-Telrachloorethaan in mglkg drooggewich in sediment | Defal
1,1,1,2-Tetrachioorethaan in mgikg drooggewich in sediment | Detail

® Download Data ® Upload to MDA
Q Kaart Viewer M Bewaar Selectie

@ Share
@ Webservice URL

€ New Selection

Data Download

Data Summary

Next

Record
count

1

1
1
3
1
2
1
2

Uw Selectie

Databron
Geografisch
Temporeel
Taxa

Trekken

Data Precision

Parameter Filters

< Vorige

SCHELDE
MONITOR

v" Most, but not all data in ScheldeMonitor is public. Some data are only visible for users
with appropriate credentials. For these data sets, no values will be given when
downloading the data using both data files and webservices. Therefore, the toolbox
provides a “Login” button in the upper right corner. This button will take users to a login
screen where credentials can be entered or requested. After successful login, return to

the toolbox. All values will now be visible upon downloading the data set.

E-mail

Password

If you have any problems logging in, please contact us at account@vliz.be

[Register] [Login] [Lost password]

27|Page

SCHELDE
MONITOR

4.1 USING DATA FROM DOWNLOAD DATA FILES

Users can now choose to download the data from the ScheldeMonitor toolbox as data files in a
CSV file format. To do so, and to use them in the RStudio environment, the user can perform the
following steps:

v" The user selects the “Download Data” button and submits all necessary information to
commence his/her download:
e Organization: Select the type of organization you work for. This is not mandatory.
e Email: Provide the toolbox with an email address to which a notification can be send
on the readiness of your download.
o Country: Select the country from which the download is done.
o Data purpose: Select for which purpose the download is done.

organization:

email: #*

Get a notification by email when the download is ready.
country: Please select *

data purpose: Please provide details -

[CJ 1 agree to ScheldeMonitor keeping my personal data to inform
me about the ScheldeMonitor project and its products. (optional)

Annuleren Download voorbereiden

v' After the necessary information has been submitted, your data will be prepared for
download. This preparation can be followed in the upper right corner of the screen. After
the preparation is done, a button will be provided by which the download can begin. For
large data files, a mail can be sent to a given address to notify a user that the download
is fully prepared.

28| Page

SCHELDE
MONITOR

v" Once the data file is saved on the local drive, the user can load it into the RStudio
environment to start working with the data. This can be done by using the basic package

of R, by running the following function:

data = read.csv(“path/file.csv’, stringsAsFactors = FALSE)

For example:

data_waterstand = read.csv("D

er_combined. csv”

» stringsAsFactors = FALSE)

v CSV is the only format in which the data files can be downloaded. This format does
however have a limit of 1.000.000 records. Larger files will lose records when a user

wants to open them in MS Excel before loading them in R. Therefore, users are

recommended to open these larger data files as a TXT file, in programs like Notepad++.

4.2 USING DATA FROM GENERIC WEBSERVICES
However, users of the RStudio environment of ScheldeMonitor are urged to make use of the

generic webservices that are available in the data download toolbox of ScheldeMonitor. These
webservices are a URL format that automatically queries the ScheldeMonitor database without

human intervention.

The composition of this URL is automatically generated, based on the

selection made by the user in the criteria of the data download toolbox. Using webservices has
the added advantage that no data files are needed to load in the data set in R, and that the most

29|Page

SCHELDE
MONITOR

recent version of the database is queried. The latter implies that when new data is added in the
database to an already downloaded data set, the same webservice URL will be able to
automatically load in the newly added data. To use the webservices in the RStudio environment:

v' Select the “Webservice URL” option in the data download toolbox, which will give you
the URL that is to be used to acquire the selected data set.

Webservice URL

http:/lgeo.vliz belgeoserver/wfsfows?service=WFS.

v Once you copied the entire URL, you can use it to load your data into the RStudio
environment. Therefore you can use a function in the R-library ‘sf’ and the following lines

data <- data.frame(st_read(webhservice))

of code:
1
2 install.packages(st)
3 Tlibrary(sf)
4 webservice = "URL"
5
[¥]

v' Depending on the size of the requested data set, loading the data in R can take up to a
minute. Nevertheless, the data set will be available in the environment of the RStudio. The
limit of the webservice is capped at around 1.000.000 records per request. Therefore, it
is recommended that users generate multiple separate URL'’s in the toolbox if they want
to analyze more than a million records, and merge the data set in R itself.

30|Page

SCHELDE
MONITOR

5 HELPDESK

VLIZ is responsible to keep the RStudio environment of ScheldeMonitor up and running. Besides
foreseeing the necessary server and memory capacity, VLIZ will thus also make sure that all
necessary R libraries and packages are installed on the RStudio server. If new libraries and
packages need to be installed, users can contact VLIZ to do so.

To accommodate these and other needs of users and contributors, VLIZ will have a permanent
helpdesk. This helpdesk can be contacted through the general address of the ScheldeMonitor:

Helpdesk ScheldeMonitor O

Data Centre - Local Services & Projects

‘ Vlaams Instituut voor de Zee vzw T +32 (0)59340172
Flanders Marine Institute info@scheldemonitor.org
~| InnovOcean site, Wandelaarkaai 7 www.vliz.be
8400 Oostende, Belgium
VLIZ

For urgent matters or questions, or if users and contributors want to discuss the use of the
RStudio environment for certain projects, the project manager of ScheldeMonitor should be

contacted:
Jelle Rondelez .
O

Project Manager
Data Centre - Local Services & Projects

‘ Vlaams Instituut voor de Zee vzw M +32 (0)473510828

Flanders Marine Institute jelle.rondelez@vliz.be

~' InnovOcean site, Wandelaarkaai 7 www.vliz.be

8400 Oostende, Belgium

VLIZ

31|Page

	1 About
	2 Connecting to the RStudio environment of ScheldeMonitor
	3 Working with the RStudio environment of ScheldeMonitor
	3.1 Guidelines for workspace
	Set a workspace
	Start a local project
	Set up an existing GitHUB project

	3.2 Guidelines for scripts
	Directory structure
	Script naming
	Script structure
	Script annotations

	3.3 Guidelines for code
	Hardcoding
	Naming conventions
	Spacing
	Code blocks
	Long lines of code
	Pipes
	Tidyverse style guide & add-ons

	4 Using data from ScheldeMonitor in RStudio
	4.1 Using data from download data files
	4.2 Using data from generic webservices

	5 Helpdesk

